Crystal Structure of 6β-Trimethylammoniopenicillanate Hemihydriodide†

By Philip J. Cox,* Richard J. McClure, and George A. Sim,* School of Molecular Sciences, University of Sussex, and Chemistry Department, University of Glasgow, Glasgow G12 8QQ

Crystals of the title compound are monoclinic, space group C2, with a = 19.44(3), b = 6.28(1), c = 11.33(2) Å, $\beta = 95.0(1)^\circ$, Z = 4. The atomic co-ordinates were obtained from X-ray measurements by Fourier and leastsquares calculations, the final value of R being 9.0% for 1380 visually estimated reflections. The carboxylate groups of two penicillanate groups are related by a short $O(13) \cdots O(13^1)$ separation of 2.46(2) Å across a two-fold axis; this distance is typical of the short hydrogen-bonded separations in the acid salts of some carboxylic acids and the hemihydriodide is therefore formulated as $[RCO_2 \cdots H \cdots O_2 CR]^{+|-}$. The β -lactam ring is puckered, with C(7) displaced by 0.31 Å from the plane defined by atoms C(5), N(4), and C(6). The thiazolidine ring approximates closely to an envelope form, with C(3) displaced by 0.47 Å from the mean plane through atoms C(2), S, C(5), and N(4).

THE betaine 6β -trimethylammoniopenicillanate (1) forms a highly crystalline hemihydriodide (C₁₁H₁₈N₂O₃S)- $\frac{1}{2}$ HI.¹ This material may be formulated as (R⁺CO₂H, $^{-}O_{2}CR^{+})I^{-}$ with a combination of carboxy-group and carboxylate anion which is well known in the acid salts of monobasic and dibasic carboxylic acids, where it can give rise to a short symmetrical $O\cdots H\cdots O$ hydrogen

† No reprints available.

¹ T. Leigh, J. Chem. Soc., 1965, 3616; J. P. Clayton, J. H. C. Naylor, R. Southgate, and E. R. Stone, Chem. Comm., 1969, 129.

1974

bond.² We undertook an X-ray analysis of the crystal structure of the hemihydriodide to determine whether this provides another example of such a short hydrogen

bond and, in addition, to obtain structural parameters pertinent to the correlation of molecular geometry and biological activity in penicillin and cephalosporin antibiotics.³

The crystal structure of the hemihydriodide was elucidated from a three-dimensional Fourier synthesis based on the phases of the iodine atom. The atomic coordinates were adjusted by least-squares calculations and at the end of the analysis R was 9.0% over 1380independent structure amplitudes. The molecular structure of the penicillin derivative is shown in Figure 1 and the crystal structure is illustrated in Figure 2. The

FIGURE 1 A general view of the molecular structure

FIGURE 2 The crystal structure viewed in projection along the b axis; the positive direction of the b axis projects into the page

atomic co-ordinates and thermal parameters are given in Table 1, while Tables 2-6 list the bond lengths, valency

² J. C. Speakman, Structure and Bonding, 1972, **12**, 141. ³ R. M. Sweet and L. F. Dahl, J. Amer. Chem. Soc., 1970, **92**, 5489; E. H. W. Böhme, H. E. Applegate, B. Toeplitz, J. E. Dolfini, and J. Z. Gougoutas, *ibid.*, 1971, **93**, 4324; R. D. G. Cooper, P. V. Demarco, J. C. Cheng, and N. D. Jones, *ibid.*, 1969, **91** 1408 **91**, 1408.

angles, torsion angles, displacements from mean planes, and intermolecular separations.

TABLE 1

Fractional atomic co-ordinates and temperature factors, with standard deviations in parentheses

	x	у	z	B
I	0.0000	0.0000	0.0000	*
S(1)	0.2281(2)	0.5161(11)	0.3330(3)	*
C(2)	0.1401(7)	0.4404(25)	0.2650(12)	$2 \cdot 1(3)$
C(3)	0.1288(6)	0.2116(27)	0.3062(11)	1.8(2)
N(4)	0.1971(6)	0.1151(23)	0.3210(10)	$2 \cdot 1(2)$
C(5)	0.2534(7)	0.2413(27)	0.3725(12)	1.9(2)
C(6)	0.3012(7)	0.1038(30)	0.3019(13)	$2 \cdot 2(2)$
C(7)	0.2353(6)	0.0201(43)	0.2350(11)	$2 \cdot 3(2)$
O(8)	0.2208(6)	-0.0717(24)	0.1485(11)	3.9(3)
C(9)	0.0904(10)	0.6050(39)	0.3070(17)	3.8(4)
C(10)	0.1409(8)	0.4441(30)	0.1283(14)	2.9(3)
C(11)	0.0953(7)	0.1952(30)	0.4218(12)	$2 \cdot 1(2)$
O(12)	0.1283(6)	0.2162(25)	0.5183(11)	3.6(2)
O(13)	0.0286(6)	0.1697(25)	0.4074(10)	$3 \cdot 3(2)$
N(14)	0.3568(6)	0.1914(24)	0.2304(10)	$2 \cdot 0(2)$
C(15)	0.3301(9)	0.3190(36)	0.1248(15)	$3 \cdot 1(3)$
C(16)	0.3950(7)	0.0069(63)	0.1843(13)	3.5(3)
C(17)	0.4071(9)	0.3266(37)	0.3090(15)	$3 \cdot 2(3)$

* For the iodine and sulphur atoms anisotropic temperature factors were employed in the form: $T = \exp[-(b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + b_{12}hk + b_{13}hl + b_{23}kl)] (b_{ij} \times 10^4)$

	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
I	13(0)	262(6)	95(2)	0	22(1)	0
S(1)	15(1)	42(10)	55(3)	3(7)	-4(2)	-2(14)

TABLE 2

Interatomic distances (Å)

S(1) - C(2)	1.88(2)	C(5)-C(6)	1.54(2)
S(1) - C(5)	1.84(2)	C(6) - C(7)	1.53(2)
C(2) - C(3)	1.53(2)	C(6) - N(14)	1.51(2)
C(2) - C(9)	1.52(3)	C(7) - O(8)	1.15(2)
C(2) - C(10)	1.55(2)	C(11) - O(12)	1.23(2)
C(3) - N(4)	1.46(2)	C(11) - O(13)	1.30(2)
C(3) - C(11)	1.52(2)	N(14) - C(15)	1.50(2)
N(4) - C(5)	1.43(2)	N(14) - C(16)	1.50(3)
N(4) - C(7)	1.41(2)	N(14) - C(17)	1.52(2)

The carboxy-groups of two penicillanate groups are in close proximity across the two-fold axis; the $O(13) \cdots$ $O(13^{I})$ separation of 2.46(2) Å is substantially shorter

TABLE 3

Valency angles (deg.)

	5	0 (0,	
C(5)-S(1)-C(2)	$94 \cdot 4(8)$	C(3)-C(2)-S(1)	$105 \cdot 2(8)$
C(9) - C(2) - S(1)	$106 \cdot 3(9)$	C(10) - C(2) - S(1)	108.5(7)
N(4) - C(5) - S(1)	104.0(6)	C(6) - C(5) - S(1)	124.0(6)
C(9) - C(2) - C(3)	115.5(11)	C(10) - C(2) - C(3)	109.4(10)
N(4) - C(3) - C(2)	$105 \cdot 8(10)$	C(11) - C(3) - C(2)	114.2(9)
C(10) - C(2) - C(9)	111.5(12)	C(11) - C(3) - N(4)	109.2(10)
C(5) - N(4) - C(3)	$118 \cdot 2(11)$	C(7) - N(4) - C(3)	$128 \cdot 8(9)$
O(12) - C(11) - C(3)	$122 \cdot 1(9)$	O(13) - C(11) - C(3)	113.5(8)
C(7) - N(4) - C(5)	95.0(10)	C(6) - C(5) - N(4)	87.3(10)
C(6) - C(7) - N(4)	88.9(10)	O(8) - C(7) - N(4)	$134 \cdot 3(9)$
C(7) - C(6) - C(5)	86.1(10)	N(14) - C(6) - C(5)	124.5(10)
N(14) - C(6) - C(7)	118.0(9)	O(8) - C(7) - C(6)	136.7(9)
C(15) - N(14) - C(6)	$114 \cdot 2(10)$	C(16) - N(14) - C(6)	107.8(15)
C(17) - N(14) - C(6)	110.1(10)	O(13) - C(11) - O(12)	$124 \cdot 3(10)$
C(16) - N(14) - C(15)	106.5(14)	C(17) - N(14) - C(15)	109.2(13)
C(17) - N(14) - C(16)	$108 \cdot 8(11)$		

than a normal van der Waals separation and accordingly characterizes a strong hydrogen-bonded association. If, in accord with formal space-group requirements, the hydrogen atom is situated on the two-fold Torsion angles (deg.), standard deviations are $ca. 2^{\circ}$

(a.g.o., (a.g.), starrate a	401100000000000000000000000000000000000
C(5)-S(1)-C(2)-C(3)	14
C(5) - S(1) - C(2) - C(9)	137
C(5)-S(1)-C(2)-C(9) C(5)-S(1)-C(2)-C(10)	-103
C(2)-S(1)-C(5)-N(4)	6
C(2) = S(1) = C(3) = N(4)	102
C(2)-S(1)-C(5)-C(6)	
S(1) - C(2) - C(3) - N(4)	-30
S(1)-C(2)-C(3)-C(11)	90
C(9)-C(2)-C(3)-N(4)	-147
C(9)-C(2)-C(3)-C(11)	-27
C(10)-C(2)-C(3)-N(4)	86
C(10)-C(2)-C(3)-C(11)	-154
C(2) - C(3) - N(4) - C(5)	40
C(2)-C(3)-N(4)-C(7)	84
C(11) - C(3) - N(4) - C(5)	-83
C(11)-C(3)-N(4)-C(7)	153
C(2) - C(3) - C(11) - O(12)	- 81
C(2) - C(3) - C(11) - O(13)	96
N(4) - C(3) - C(11) - O(12)	38
N(4)-C(3)-C(11)-O(13) C(3)-N(4)-C(5)-S(1)	-146
C(3) - N(4) - C(5) - S(1)	-28
C(3) - N(4) - C(5) - C(6)	-152
C(7) - N(4) - C(5) - S(1)	111
C(7)-N(4)-C(5)-C(6)	-13
C(3) - N(4) - C(7) - C(6)	146
C(3) = N(4) = C(7) = O(8)	-31
C(5) - N(4) - C(7) - C(6)	13
C(5)-N(4)-C(7)-O(8)	-164
S(1) - C(5) - C(6) - C(7)	- 93
S(1)-C(5)-C(6)-C(7) S(1)-C(5)-C(6)-N(14)	28
N(4)-C(5)-C(6)-C(7)	12
N(4)-C(5)-C(6)-N(14)	133
C(K) = C(B) = C(7) = N(A)	12
C(5)-C(6)-C(7)-N(4) C(5)-C(6)-C(7)-O(8)	164
N(14)-C(6)-C(7)-N(4)	-139
N(14) - C(6) - C(7) - O(8)	
$\Gamma(14) = C(0) = C(1) = O(0)$ C(5) = C(6) = N(14) = C(15)	-66
C(5)-C(6)-N(14)-C(15) C(5)-C(6)-N(14)-C(16)	-00 175
C(5) - C(6) - N(14) - C(10)	
C(5)-C(6)-N(14)-C(17)	57
C(7)-C(6)-N(14)-C(15)	$ 39 \\ -79 $
C(7)-C(6)-N(14)-C(16)	
C(7)-C(6)-N(14)-C(17)	163

TABLE 5

Displacements (Å) of atoms from planes

Plane (1): N(4), C(5), C(6)

N(4) 0, C(5) 0, C(6) 0, S(1) 1.47, C(3) 0.59, C(7) 0.31, N(14) 0.90

Plane (2): S(1), C(2), N(4), C(5)

S(1) 0.03, C(2) -0.03, N(4) 0.03, C(5) -0.04, C(3) -0.47, C(6) 1.18, C(7) 1.31, C(9) -0.98, C(10) 1.41

axis then we have an example of a symmetrical $O \cdots H$ \cdots O hydrogen bond. On the other hand, if the proton is randomly disordered over two alternative sites on either side of the two-fold axis then the hydrogen bond would be of the normal unsymmetrical $O-H \cdots O$ type. The O \cdots O interaction at 2.46 Å may be compared with a number of 'very short 'hydrogen bonds ² found in acid salts of carboxylic acids: for example, intermolecular hydrogen bonds involving crystallographic two-fold symmetry occur in sodium hydrogen diacetate [2.44(1) Å],⁴ potassium hydrogen succinate [2.446(4) Å],⁵ ammonium hydrogen glutarate [2.406(7) Å],⁶ and potas-

⁴ J. C. Speakman and H. H. Mills, *J. Chem. Soc.*, 1961, 1164. ⁵ A. McAdam, M. Currie, and J. C. Speakman, *J. Chem. Soc.*

(A), 1971, 1994. ⁶ A. L. Mac MacDonald and J. C. Speakman, J. Cryst. Mol. Structure, 1971, 1, 189.

sium hydrogen acetylenedicarboxylate [2.445(3) Å].⁷ In the case of the acid salts there is strong evidence that 'very short' hydrogen bonds which lie across crystallographic elements of symmetry are genuinely symmetrical,² and this may also be true for the hydrogen bond in the hemihydriodide.

The bond lengths in the carboxy-group show that C(11)-O(12) (1.23 Å) has more double-bond character

TABLE 6

Intermolecular separations $(< 3.8 \text{ A})$				
$O(13) \cdot \cdot \cdot O(13I)$	$2 \cdot 46$	$C(10) \cdot \cdot \cdot C(15^{v})$	3.79	
$C(11) \cdots O(13I)$	3.22	$C(10) \cdots C(16V)$	3.57	
$O(12) \cdots O(13^{1})$	3.25	$S(1) \cdots C(5^{VI})$	3.61	
$S(1) \cdots C(7^{II})$	3.36	$S(1) \cdots O(12^{v_I})$	3.38	
$S(1) \cdots O(8^{II})$	3.32	$O(8) \cdots C(15^{VII})$	3.24	
$C(2) \cdots O(8^{II})$	3.74	$C(6) \cdots O(12^{VIII})$	3.39	
$O(8) \cdots O(10^{11})$	3.41	$O(12) \cdots \dot{C}(17^{VIII})$	3.24	
$O(13) \cdots C(17^{1V})$	3.32			

Roman numerals as superscripts refer to the following transformations of the atomic co-ordinates:

I - x, y, 1 - z	$V \frac{1}{2} - x, \frac{1}{2} + y, -z$
II x, $1 + y$, z	$VI \frac{1}{2} - x, \frac{1}{2} + y, 1 - z$
III $x, -1 + y, z$	VII $\frac{1}{2} - x, -\frac{1}{2} + y, -z$
IV $-\frac{1}{2} + x, -\frac{1}{2} + y, z$	VIII $\frac{1}{2} - x$, $-\frac{1}{2} + y$, $1 - z$

than C(11)-O(13) (1.30 Å), whereas in an unperturbed carboxylate anion both bonds are normally of the same length, cf. distances of 1.240 and 1.245 Å in the zwitterionic form of ampicillin trihydrate.8

The β -lactam ring in the hemihydriodide displays a buckled conformation, with atom C(7) displaced 0.31 Å above the plane defined by atoms C(5), N(4), and C(6). In phenoxymethylpenicillin⁹ and potassium benzylpenicillin¹⁰ atom C(7) of the β -lactam is displaced by 0.15 Å. The thiazolidine ring has an envelope conformation in which C(3) is 0.47 Å out of the plane containing atoms S(1), C(2), N(4), and C(5). In phenoxymethylpenicillin the corresponding displacement is 0.51 Å.9

The lactam nitrogen atom is displaced by 0.29 Å from the plane of its three substituents C(3), C(5), and C(7). In benzylpenicillin the displacement is 0.40 Å. Dahl has observed that the β -lactam nitrogen atom has a greater pyramidal character in active Δ^3 -cephalosporin antibiotics than in the inactive Δ^2 -cephalosporin, being displaced by ca. 0.2-0.3 Å from the plane of its three substituent atoms in the former case and by only 0.06 Å in the latter, and that the departure from coplanarity can be correlated with the ease of base hydrolysis of the β-lactam amide bond.³

EXPERIMENTAL

Crystal Data.— $C_{11}H_{18}N_2O_3S_{12}HI$, $M = 322\cdot3$. Monoclinic, a = 19.44(3), b = 6.28(1), c = 11.33(2) Å, $\beta =$

⁷ I. Leban, Lj. Golić, and J. C. Speakman, J.C.S. Perkin II, 1973, 703.

⁸ M. N. G. Jones, D. Hall, and D. C. Hodgkin, Nature, 1968. 220, 168.
S. Abrahamsson, D. C. Hodgkin, and E. N. Maslen, *Biochem*

J., 1963, **86**, 514. ¹⁰ G. J. Pitt, Acta Cryst., 1952, **5**, 770.

95.0(1)°, $U = 1377 \text{ Å}^3$, $D_{\rm m} = 1.55$, Z = 4, $D_{\rm c} = 1.56$, F(000) = 660. Space group C2 (C_2^3). Mo- K_{α} radiation, $\lambda = 0.7107 \text{ Å}$; $\mu(\text{Mo-}K_{\alpha}) = 13.7 \text{ cm}^{-1}$.

Crystallographic Measurements.—Rotation, Weissenberg, and precession photographs were taken. The systematically absent reflections for the optically active compound indicated the space group C2. Intensity data were obtained from layers h0-6l of equi-inclination Weissenberg photographs taken with Zr-filtered Mo- K_{α} radiation. A Joyce-Loebl integrating microdensitometer was used to measure the intensities, which after correction for Lorentz and polarization effects gave 1380 independent structure amplitudes. The various layers were placed on a common scale by correlation with a limited set of intensities obtained from precession photographs.

Structure Analysis.—The iodine atom, which lies on a two-fold symmetry axis, was used to define the origin of the cell, and the co-ordinates of the sulphur atom were found from a Fourier synthesis. A subsequent Fourier synthesis based on the phases of the iodine and sulphur atoms showed little pseudo-symmetry and fourteen further atoms were unambiguously located. After two cycles of least-squares calculations with isotropic thermal parameters R was 24·1% and a Fourier difference synthesis gave the co-ordinates of

* See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue.

the two remaining carbon atoms. A further two cycles of isotropic refinement lowered R to $15 \cdot 1\%$.

The iodine and sulphur atoms were next assigned anisotropic temperature factors and one cycle of least-squares calculations gave R 9.5%. Corrections for anomalous dispersion were applied to the iodine scattering factor ¹¹ and two further rounds of calculations reached convergence at R 9.0%. A final difference electron-density distribution gave no clear indication of hydrogen atom positions. A unitary weighting scheme (w = 1) was retained throughout the least-squares calculations as $\langle w\Delta^2 \rangle$ was approximately constant over various ranges of $|F_0|$ and sin θ . Observed and calculated structure amplitudes are listed in Supplementary Publication No. SUP 20911 (9 pp., 1 microfiche).*

The various calculations were performed on an Atlas computer at the S.R.C. Chilton Laboratory, an ICL 1905 computer at the University of Sussex, and a KDF 9 computer at the University of Glasgow. We thank the S.R.C. for the purchase of the microdensitometer, the U.S. National Institutes of Health for a fellowship (to R. J. McC.), and Dr. J. H. C. Naylor (Beecham Research Laboratories) for a supply of the hemihydriodide.

[3/1835 Received, 3rd September, 1973]

¹¹ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1952.