Crystal Structure of 6β-Trimethylammoniopenicillanate Hemihydriodide \dagger

By Philip J. Cox,* Richard J. McClure, and George A. Sim,* School of Molecular Sciences, University of Sussex, and Chemistry Department, University of Glasgow, Glasgow G12 800

Crystals of the title compound are monoclinic, space group $C 2$, with $a=19 \cdot 44(3), b=6 \cdot 28(1), c=11 \cdot 33(2) A$, $\beta=95.0(1)^{\circ}, Z=4$. The atomic co-ordinates were obtained from X-ray measurements by Fourier and leastsquares calculations, the final value of R being $9 \cdot 0 \%$ for 1380 visually estimated reflections. The carboxylate groups of two penicillanate groups are related by a short $O(13) \cdots O\left(13^{\mathrm{I}}\right)$ separation of $2 \cdot 46(2) \AA$ across a two-fold axis; this distance is typical of the short hydrogen-bonded separations in the acid salts of some carboxylic acids and the heminydriodide is therefore formulated as $\left[\mathrm{RCO}_{2} \cdots \mathrm{H} \cdots \mathrm{O}_{2} \mathrm{CR}\right]+1-$. The β-lactam ring is puckered, with $C(7)$ displaced by $0.31 \AA$ from the plane defined by atoms $C(5), N(4)$, and $C(6)$. The thiazolidine ring approximates closely to an envelope form, with $\mathrm{C}(3)$ displaced by $0.47 \AA$ from the mean plane through atoms $C(2), S, C(5)$, and $N(4)$.

THE betaine 6β-trimethylammoniopenicillanate ($\mathbf{1}$) forms a highly crystalline hemihydriodide ($\left.\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right)$ $\frac{1}{2} \mathrm{HI} .{ }^{1}$ This material may be formulated as $\left(\mathrm{R}^{+} \mathrm{CO}_{2} \mathrm{H}\right.$, $\left.{ }^{-} \mathrm{O}_{2} \mathrm{CR}^{+}\right) \mathrm{I}^{-}$with a combination of carboxy-group and carboxylate anion which is well known in the acid salts
of monobasic and dibasic carboxylic acids, where it can give rise to a short symmetrical $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ hydrogen
\dagger No reprints available.
${ }^{1}$ T. Leigh, J. Chem. Soc., 1965, 3616; J. P. Clayton, J. H. C. Naylor, R. Southgate, and E. R. Stone, Chem. Comm., 1969, 129.
bond. ${ }^{2}$ We undertook an X-ray analysis of the crystal structure of the hemihydriodide to determine whether this provides another example of such a short hydrogen

(1)
bond and, in addition, to obtain structural parameters pertinent to the correlation of molecular geometry and biological activity in penicillin and cephalosporin antibiotics. ${ }^{3}$

The crystal structure of the hemihydriodide was elucidated from a three-dimensional Fourier synthesis based on the phases of the iodine atom. The atomic coordinates were adjusted by least-squares calculations and at the end of the analysis R was $9 \cdot 0 \%$ over 1380 independent structure amplitudes. The molecular structure of the penicillin derivative is shown in Figure 1 and the crystal structure is illustrated in Figure 2. The

Figure 1 A general view of the molecular structure

Figure 2 The crystal structure viewed in projection along the b axis; the positive direction of the b axis projects into the page
atomic co-ordinates and thermal parameters are given in Table 1, while Tables 2-6 list the bond lengths, valency

[^0]angles, torsion angles, displacements from mean planes, and intermolecular separations.

Table 1
Fractional atomic co-ordinates and temperature factors, with standard deviations in parentheses

	x	y		z
I	$0 \cdot 0000$	$0 \cdot 0000$	$0 \cdot 0000$	B
$\mathrm{~S}(1)$	$0 \cdot 2281(2)$	$0 \cdot 5161(11)$	$0 \cdot 3330(3)$	$*$
$\mathrm{C}(2)$	$0 \cdot 1401(7)$	$0 \cdot 4404(25)$	$0 \cdot 2650(12)$	$2 \cdot 1(3)$
$\mathrm{C}(3)$	$0 \cdot 1288(6)$	$0 \cdot 2116(27)$	$0 \cdot 3062(11)$	$1 \cdot 8(2)$
$\mathrm{N}(4)$	$0 \cdot 1971(6)$	$0 \cdot 1151(23)$	$0 \cdot 3210(10)$	$2 \cdot 1(2)$
$\mathrm{C}(5)$	$0 \cdot 2534(7)$	$0 \cdot 2413(27)$	$0 \cdot 3725(12)$	$1 \cdot 9(2)$
$\mathrm{C}(6)$	$0 \cdot 3012(7)$	$0 \cdot 1038(30)$	$0 \cdot 3019(13)$	$2 \cdot 2(2)$
$\mathrm{C}(7)$	$0 \cdot 2353(6)$	$0 \cdot 0201(43)$	$0 \cdot 2350(11)$	$2 \cdot 3(2)$
$\mathrm{O}(8)$	$0 \cdot 2208(6)$	$-0 \cdot 0717(24)$	$0 \cdot 1485(11)$	$3 \cdot 9(3)$
$\mathrm{C}(9)$	$0 \cdot 0904(10)$	$0 \cdot 6050(39)$	$0 \cdot 3070(17)$	$3 \cdot 8(4)$
$\mathrm{C}(10)$	$0 \cdot 1409(8)$	$0 \cdot 4441(30)$	$0 \cdot 1283(14)$	$2 \cdot 9(3)$
$\mathrm{C}(11)$	$0 \cdot 0953(7)$	$0 \cdot 1952(30)$	$0 \cdot 4218(12)$	$2 \cdot 1(2)$
$\mathrm{O}(12)$	$0 \cdot 1283(6)$	$0 \cdot 2162(25)$	$0 \cdot 5183(11)$	$3 \cdot 6(2)$
$\mathrm{O}(13)$	$0 \cdot 0286(6)$	$0 \cdot 1697(25)$	$0 \cdot 4074(10)$	$3 \cdot 3(2)$
$\mathrm{N}(14)$	$0 \cdot 3568(6)$	$0 \cdot 1914(24)$	$0 \cdot 2304(10)$	$2 \cdot 0(2)$
$\mathrm{C}(15)$	$0 \cdot 3301(9)$	$0 \cdot 3190(36)$	$0 \cdot 1248(15)$	$3 \cdot 1(3)$
$\mathrm{C}(16)$	$0 \cdot 3950(7)$	$0 \cdot 0069(63)$	$0 \cdot 1843(13)$	$3 \cdot 5(3)$
$\mathrm{C}(17)$	$0 \cdot 4071(9)$	$0 \cdot 3266(37)$	$0 \cdot 3090(15)$	$3 \cdot 2(3)$

* For the iodine and sulphur atoms anisotropic temperature factors were employed in the form: $T=\exp \left[-\left(b_{11} h^{2}+b_{22} h^{2}\right.\right.$ $\left.\left.+b_{33} l^{2}+b_{12} h k+b_{13} h l+b_{23} k l\right)\right]\left(b_{i j} \times 10^{4}\right)$

$$
\begin{array}{lcccccc}
& b_{11} & b_{22} & b_{33} & b_{12} & b_{13} & b_{23} \\
\mathrm{I} & 13(0) & 262(6) & 95(2) & 0 & 22(1) & 0 \\
\mathrm{~S}(1) & 15(1) & 42(10) & 55(3) & 3(7) & -4(2) & -2(14)
\end{array}
$$

Table 2
Interatomic distances (\AA)

$\mathrm{S}(1)-\mathrm{C}(2)$	$1.88(2)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 54(2)$
$\mathrm{S}(1)-\mathrm{C}(5)$	$1.84(2)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.53(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.53(2)$	$\mathrm{C}(6)-\mathrm{N}(14)$	$1.51(2)$
$\mathrm{C}(2)-\mathrm{C}(9)$	$1.52(3)$	$\mathrm{C}(7)-\mathrm{O}(8)$	$1 \cdot 15(2)$
$\mathrm{C}(2)-\mathrm{C}(10)$	$1.55(2)$	$\mathrm{C}(11)-\mathrm{O}(12)$	$1.23(2)$
$\mathrm{C}(3)-\mathrm{N}(4)$	$1.46(2)$	$\mathrm{C}(11)-\mathrm{O}(13)$	$1.30(2)$
$\mathrm{C}(3)-\mathrm{C}(11)$	$1.52(2)$	$\mathrm{N}(14)-\mathrm{C}(15)$	$1.50(2)$
$\mathrm{N}(4)-\mathrm{C}(5)$	$1.43(2)$	$\mathrm{N}(14)-\mathrm{C}(16)$	$1.50(3)$
$\mathrm{N}(4)-\mathrm{C}(7)$	$1.41(2)$	$\mathrm{N}(14)-\mathrm{C}(17)$	$1.52(2)$

The carboxy-groups of two penicillanate groups are in close proximity across the two-fold axis; the $\mathrm{O}(13) \cdots$ $\mathrm{O}\left(13^{\mathrm{T}}\right)$ separation of $2 \cdot 46(2) \AA$ is substantially shorter

Table 3
Valency angles (deg.)

$\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(2)$	$94 \cdot 4(8)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{S}(1)$	$105 \cdot 2(8)$
$\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{S}(1)$	$106 \cdot 3(9)$	$\mathrm{C}(10)-\mathrm{C}(2)-\mathrm{S}(1)$	$108 \cdot 5(7)$
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	$104 \cdot 0(6)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1)$	$124 \cdot 0(6)$
$\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{C}(3)$	$115 \cdot 5(11)$	$\mathrm{C}(10)-\mathrm{C}(2)-\mathrm{C}(3)$	$109 \cdot 4(10)$
$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$105 \cdot 8(10)$	$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(2)$	$114 \cdot 2(9)$
$\mathrm{C}(10)-\mathrm{C}(2)-\mathrm{C}(9)$	$111 \cdot 5(12)$	$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{N}(4)$	$109 \cdot 2(10)$
$\mathrm{C}(5)-\mathrm{N}(4)-\mathrm{C}(3)$	$118 \cdot 2(11)$	$\mathrm{C}(7)-\mathrm{N}(4)-\mathrm{C}(3)$	$128 \cdot 8(9)$
$\mathrm{O}(12)-\mathrm{C}(11)-\mathrm{C}(3)$	$122 \cdot 1(9)$	$\mathrm{O}(13)-\mathrm{C}(11)-\mathrm{C}(3)$	$113 \cdot 5(8)$
$\mathrm{C}(7)-\mathrm{N}(4)-\mathrm{C}(5)$	$95 \cdot 0(10)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(4)$	$87 \cdot 3(10)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(4)$	$88 \cdot 9(10)$	$\mathrm{O}(8)-\mathrm{C}(7)-\mathrm{N}(4)$	$134 \cdot 3(9)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$86 \cdot 1(10)$	$\mathrm{N}(14)-\mathrm{C}(6)-\mathrm{C}(5)$	$124 \cdot 5(10)$
$\mathrm{N}(14)-\mathrm{C}(6)-\mathrm{C}(7)$	$118 \cdot 0(9)$	$\mathrm{O}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$136 \cdot 7(9)$
$\mathrm{C}(15)-\mathrm{N}(14)-\mathrm{C}(6)$	$114 \cdot 2(10)$	$\mathrm{C}(16)-\mathrm{N}(14)-\mathrm{C}(6)$	$107 \cdot 8(15)$
$\mathrm{C}(17)-\mathrm{N}(14)-\mathrm{C}(6)$	$110 \cdot 1(10)$	$\mathrm{O}(13)-\mathrm{C}(11)-\mathrm{O}(12)$	$124 \cdot 3(10)$
$\mathrm{C}(16)-\mathrm{N}(14)-\mathrm{C}(15)$	$106 \cdot 5(14)$	$\mathrm{C}(17)-\mathrm{N}(14)-\mathrm{C}(15)$	$109 \cdot 2(13)$
$\mathrm{C}(17)-\mathrm{N}(14)-\mathrm{C}(16)$	$108 \cdot 8(11)$		

than a normal van der Waals separation and accordingly characterizes a strong hydrogen-bonded association. If, in accord with formal space-group requirements, the hydrogen atom is situated on the two-fold

Table 4
Torsion angles (deg.), standard deviations are ca. 2°

$\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	14
$\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(9)$	137
$\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(10)$	-103
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{N}(4)$	
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	102
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)$	-30
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	90
$\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)$	-147
$\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	-27
$\mathrm{C}(10)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)$	86
$\mathrm{C}(10)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1.1)$	-154
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	40
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(7)$	-84
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	-83
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(7)$	153
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{O}(12)$	-81
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{O}(13)$	96
N(4)-C(3)-C(11)-O(12)	38 -146
$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{O}(13)$	-146
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	-28
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-152
$\mathrm{C}(7)-\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	111
$\mathrm{C}(7)-\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-13
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(7)-\mathrm{C}(6)$	146
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(7)-\mathrm{O}(8)$	-31
$\mathrm{C}(5)-\mathrm{N}(4)-\mathrm{C}(7)-\mathrm{C}(6)$	13
$\mathrm{C}(5)-\mathrm{N}(4)-\mathrm{C}(7)-\mathrm{O}(8)$	-164
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-93
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(14)$	28
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	12
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(14)$	133
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(4)$	-12
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(8)$	164 -139
$\mathrm{N}(14)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(4)$	-139
$\mathrm{N}(14)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(8)$	37
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(14)-\mathrm{C}(15)$	-66
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(14)-\mathrm{C}(16)$	175
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(14)-\mathrm{C}(17)$	57
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(14)-\mathrm{C}(15)$	39
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(14)-\mathrm{C}(16)$	-79
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(14)-\mathrm{C}(17)$	63

Table 5
Displacements (\AA) of atoms from planes
Plane (1): N(4), C(5), C(6)
$\mathrm{N}(4) 0, \mathrm{C}(5) 0, \mathrm{C}(6) 0, \mathrm{~S}(1) 1 \cdot 47, \mathrm{C}(3) 0 \cdot 59, \mathrm{C}(7) 0 \cdot 31, \mathrm{~N}(14)$ 0.90

Plane (2): $\mathrm{S}(1), \mathrm{C}(2), \mathrm{N}(4), \mathrm{C}(5)$
$\mathrm{S}(1) 0.03, \mathrm{C}(2)-0.03, \mathrm{~N}(4) 0.03, \mathrm{C}(5)-0.04, \mathrm{C}(3)-0.47$,
$\mathrm{C}(6) 1 \cdot 18, \mathrm{C}(7) 1 \cdot 31, \mathrm{C}(9)-0 \cdot 98, \mathrm{C}(10) 1 \cdot 41$
axis then we have an example of a symmetrical $\mathrm{O} \cdots \mathrm{H}$ $\cdots \mathrm{O}$ hydrogen bond. On the other hand, if the proton is randomly disordered over two alternative sites on either side of the two-fold axis then the hydrogen bond would be of the normal unsymmetrical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ type. The $\mathrm{O} \cdots \mathrm{O}$ interaction at $2 \cdot 46 \AA$ may be compared with a number of ' very short ' hydrogen bonds ${ }^{2}$ found in acid salts of carboxylic acids: for example, intermolecular hydrogen bonds involving crystallographic two-fold symmetry occur in sodium hydrogen diacetate $[2 \cdot 44(1) \AA],{ }^{4}$ potassium hydrogen succinate $[2 \cdot 446(4) \AA],{ }^{5}$ ammonium hydrogen glutarate $[2 \cdot 406(7) \AA]^{6}$ and potas-

[^1]sium hydrogen acetylenedicarboxylate $[\mathbf{2} \mathbf{4 4 5 (3)} \AA] .^{7}$ In the case of the acid salts there is strong evidence that ' very short' hydrogen bonds which lie across crystallographic elements of symmetry are genuinely symmetrical, ${ }^{2}$ and this may also be true for the hydrogen bond in the hemihydriodide.

The bond lengths in the carboxy-group show that $\mathrm{C}(11)-\mathrm{O}(12)(\mathrm{l} \cdot 23 \AA)$ has more double-bond character

Table 6

$O(13) \cdots C\left(17^{1 \mathrm{~V}}\right) \quad 3 \cdot 32$
Roman numerals as superscripts refer to the following transformations of the atomic co-ordinates:

$$
\begin{aligned}
& \text { I }-x, y, 1-z \\
& \text { II } x, 1+y, z \\
& \text { III } x,-1+y, z \\
& \text { IV }-\frac{1}{2}+x,-\frac{1}{2}+y, z
\end{aligned}
$$

$$
\begin{gathered}
\text { V } \frac{1}{2}-x, \frac{1}{2}+y,-z \\
\text { VI } \frac{1}{2}-x, \frac{1}{2}+y, 1-z \\
\text { VII } \frac{1}{2}-x,-\frac{1}{2}+y,-z
\end{gathered}
$$

$$
\begin{array}{ll}
\text { IV }-\frac{1}{2}+x,-\frac{1}{2}+y, z & \text { VIII } \frac{1}{2}-x, x,-\frac{1}{2}+y,-z \\
\frac{1}{2}-1-z-z
\end{array}
$$

than $\mathrm{C}(11)-\mathrm{O}(\mathbf{1 3})(1 \cdot 30 \AA)$, whereas in an unperturbed carboxylate anion both bonds are normally of the same length, $c f$. distances of 1.240 and $1.245 \AA$ in the zwitterionic form of ampicillin trihydrate. ${ }^{8}$

The β-lactam ring in the hemihydriodide displays a buckled conformation, with atom C(7) displaced $0.31 \AA$ above the plane defined by atoms $\mathrm{C}(5), \mathrm{N}(4)$, and $\mathrm{C}(\mathbf{6})$. In phenoxymethylpenicillin ${ }^{9}$ and potassium benzylpenicillin ${ }^{10}$ atom $\mathrm{C}(7)$ of the β-lactam is displaced by $0 \cdot 15 \AA$. The thiazolidine ring has an envelope conformation in which $\mathrm{C}(3)$ is $0.47 \AA$ out of the plane containing atoms $\mathrm{S}(1), \mathrm{C}(2), \mathrm{N}(4)$, and $\mathrm{C}(5)$. In phenoxymethylpenicillin the corresponding displacement is $0.51 \AA \AA^{9}$

The lactam nitrogen atom is displaced by $0.29 \AA$ from the plane of its three substituents $\mathrm{C}(3), \mathrm{C}(5)$, and $\mathrm{C}(7)$. In benzylpenicillin the displacement is $0 \cdot 40 \AA$. Dahl has observed that the β-lactam nitrogen atom has a greater pyramidal character in active Δ^{3}-cephalosporin antibiotics than in the inactive Δ^{2}-cephalosporin, being displaced by $c a .0 \cdot 2-0.3 \AA$ from the plane of its three substituent atoms in the former case and by only $0.06 \AA$ in the latter, and that the departure from coplanarity can be correlated with the ease of base hydrolysis of the β-lactam amide bond. ${ }^{3}$

EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}, \frac{1}{2} \mathrm{HI}, \quad M=322 \cdot 3$. Monoclinic, $\quad a=19 \cdot 44(3), \quad b=6 \cdot 28(1), \quad c=11 \cdot 33(2) \AA, \quad \beta=$
${ }^{7}$ I. Leban, Lj. Golić, and J. C. Speakman, J.C.S. Perkin II, 1973, 703.
${ }^{8}$ M. N. G. Jones, D. Hall, and D. C. Hodgkin, Nature, 1968, 220, 168.
${ }^{9}$ S. Abrahamsson, D. C. Hodgkin, and E. N. Maslen, Biochem $J ., 1963,86,514$.
${ }^{10}$ G. J. Pitt, Acta Cryst., 1952, 5, 770.
$95.0(1)^{\circ}, \quad U=1377 \AA^{3}, \quad D_{\mathrm{m}}=1.55, \quad Z=4, \quad D_{\mathrm{c}}=1.56$, $F(000)=660$. Space group C2 $\left(C_{2}^{3}\right) . \quad$ Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=13.7 \mathrm{~cm}^{-1}$.

Crystallographic Measurements.-Rotation, Weissenberg, and precession photographs were taken. The systematically absent reflections for the optically active compound indicated the space group C2. Intensity data were obtained from layers $h 0-6 l$ of equi-inclination Weissenberg photographs taken with Zr -filtered $\mathrm{Mo}-K_{\alpha}$ radiation. A JoyceLoebl integrating microdensitometer was used to measure the intensities, which after correction for Lorentz and polarization effects gave 1380 independent structure amplitudes. The various layers were placed on a common scale by correlation with a limited set of intensities obtained from precession photographs.

Structure Analysis.-The iodine atom, which lies on a two-fold symmetry axis, was used to define the origin of the cell, and the co-ordinates of the sulphur atom were found from a Fourier synthesis. A subsequent Fourier synthesis based on the phases of the iodine and sulphur atoms showed little pseudo-symmetry and fourteen further atoms were unambiguously located. After two cycles of least-squares calculations with isotropic thermal parameters R was $24 \cdot 1 \%$ and a Fourier difference synthesis gave the co-ordinates of

* Sce Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue.
the two remaining carbon atoms. A further two cycles of isotropic refinement lowered R to $15 \cdot 1 \%$.
The iodine and sulphur atoms were next assigned anisotropic temperature factors and one cycle of least-squares calculations gave $R \mathbf{9 . 5 \%}$. Corrections for anomalous dispersion were applied to the iodine scattering factor ${ }^{11}$ and two further rounds of calculations reached convergence at $R \mathbf{9 . 0 \%}$. A final difference electron-density distribution gave no clear indication of hydrogen atom positions. A unitary weighting scheme ($w=1$) was retained throughout the least-squares calculations as $\left\langle w \Delta^{2}\right\rangle$ was approximately constant over various ranges of $\left|F_{0}\right|$ and $\sin \theta$. Observed and calculated structure amplitudes are listed in Supplementary Publication No. SUP 20911 (9 pp ., 1 microfiche).*

The various calculations were performed on an Atlas computer at the S.R.C. Chilton Laboratory, an ICL 1905 computer at the University of Sussex, and a KDF 9 computer at the University of Glasgow. We thank the S.R.C. for the purchase of the microdensitometer, the U.S. National Institutes of Health for a fellowship (to R. J. McC.), and Dr. J. H. C. Naylor (Beecham Research Laboratories) for a supply of the hemihydriodide.
[3/1835 Received, 3rd September, 1973]
${ }^{11}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1952.

[^0]: 2 J. C. Speakman, Structure and Bonding, 1972, 12, 141.
 ${ }^{3}$ R. M. Sweet and L. F. Dahl, J. Amer. Chem. Soc., 1970, 92, 5489 ; E. H. W. Böhme, H. E. Applegate, B. Toeplitz, J. E. Dolfini, and J. Z. Gougoutas, ibid., 1971, 93, 4324; R. D. G. Cooper, P. V. Demarco, J. C. Cheng, and N. D. Jones, ibid., 1969, 91, 1408.

[^1]: 4 J. C. Speakman and H. H. Mills, J. Chem. Soc., 1961, 1164.
 ${ }^{5}$ A. McAdam, M. Currie, and J. C. Speakman, J. Chem. Soc. (A), 1971, 1994.
 ${ }_{6}$ A. L. MacDonald and J. C. Speakman, J. Cryst. Mol. Structure, 1971, 1, 189.

